點擊藍字關注我們
立冬習俗知多少
立冬,二十四節氣之一,斗指西北為立冬,太陽黃經為225°,于公歷11月7-8日之間交節。立冬是季節類節氣,立冬表示冬季自此開始。立冬過后,日照時間將繼續縮短,正午太陽高度繼續降低。

Celexplorer公司致力于開發最先進的生物圖像技術,為研究人員提供在顯微鏡下呈現高質量、高分辨率的細胞和組織圖像。
相 關 產 品
默默奉獻 | 瑞來大慶
貨號 | 產品 | 規格 |
FC-101 | FocusClear? | 5 ml |
FC-102 | FocusClear? | 50 ml |
FC-103 | FocusClear? | 500 ml |
DC-201 | DeepClear? | 5 ml |
DC-202 | DeepClear? | 50 ml |
MC-301 | MountClear? | 5 ml |
MC-302 | MountClear? | 50 ml |
Celexplore FocusClear?清除夜

Celexplorer FocusClear?是無毒的、即用型、水溶性清凈劑,提高交聯劑固定生物樣品的透明度,其清除效果能夠達到試樣表面以下500微米的深度。使用FocusClear?顯著提高激光激發和檢測顏色和熒光的有效性,獲得的顯微圖像質量將大大提高。用熒光和非熒光染料(包括親脂染料,如DII、DID和NBD神經酰胺)標記的樣品可直接從水、緩沖溶液、酒精、DMSO、DMF和甘油轉移到FocusClear?溶液中。
優勢:
· 增加生物組織透明度的水溶性清潔劑
· 允許在組織表面以下500μm處看到內部物體
· 比傳統的甘油基固定介質增加至少2倍的視野深度
· 提高激光激發和彩色或熒光光信號檢測的效率
· 適用于免疫熒光標記的單個細胞和組織、原位雜交、組織或整體免疫組織化學和熒光蛋白樣品。
Celexplorer MountClear?固定液

Celexplorer MountClear?是一種專門為固定FocusClear?清除的樣本而設計的固定劑。MountClear?不干擾FocusClear?的清除效果。此外,它還具有抗猝滅、無熒光和快速凝血的特性。
使用MountClear?以外的固定介質可能會導致樣品混濁。MountClear?是一種凝膠,在室溫下儲存,使用前必須用55°C水浴重新液化30分鐘。在4℃下冷卻30min,可保持樣品的空間位置,延長熒光發射時間,避免顯微掃描時的位移。
Celexplorer DeepClear

是無毒的、即用型、水溶性清凈劑,可提高交聯劑固定生物樣品的透明度,其清除效果能達到試樣表面以下500微米的深度。深凹折射率(RI)為1.52,遠高于聚焦斜率,將大大改善Z軸的畸變問題。N.A.較高的油物鏡能夠使用DeepClear?。免疫染色。隨著DeepClear?技術的應用,激光激發和彩色熒光檢測的效果更加顯著,獲得的顯微圖像質量將大大提高。使用免疫染色、熒光和非熒光染料(包括親脂染料,如DII、DID和NBD神經酰胺)標記的樣品可直接從水、緩沖溶液、酒精、DMSO、DMF和甘油轉移到FocusClear?溶液中。
優勢:
· 增加生物組織透明度的水溶性清潔劑
· 允許在組織表面以下3 mm處看到內部物體
· 比傳統的甘油基固定介質增加至少12倍的視野深度
· 提高激光激發和彩色或熒光光信號檢測的效率
· 適用于免疫熒光標記的單個細胞和組織、原位雜交、組織或整體免疫組織化學和熒光蛋白樣品。
產品應用與論文
默默奉獻 | 瑞來大慶
發布論文
· Richardson, D. S. and J. W. Lichtman (2015). "Clarifying tissue clearing." Cell 162(2): 246-257.
· Zhu, D., et al. (2013). "Recent progress in tissue optical clearing. 組織光學清除的最新進展" Laser & Photonics Reviews 7(5): 732-757.
· Genina, E. A., et al. (2010). "Tissue optical immersion clearing." Expert Rev. Med. Devices 7(6): 825-842.
應用:鼠 Mouse
· Song, E., et al. (2015). "Optical clearing based cellular-level 3D visualization of intact lymph node cortex." Biomedical optics express 6(10): 4154-4164.
· Song, E., et al. (2015). "Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin." Optics & Laser Technology 73: 69-76.
· Moy, A. J., et al. (2015). "Optical properties of mouse brain tissue after optical clearing with FocusClear?." Journal of biomedical optics 20(9): 095010-095010.
· Van Amerongen, R. (2015). "Lineage Tracing in the Mammary Gland Using Cre/lox Technology and Fluorescent Reporter Alleles." Mammary Stem Cells: Methods and Protocols: 187-211.
· Miyawaki, A. (2015). "Brain clearing for connectomics." Microscopy 64(1): 5-8.
· Li, J., et al. (2015). "Fast immuno-labeling by electrophoretically driven infiltration for intact tissue imaging." Scientific reports 5.
· Juang, J.-H., et al. (2015). "3-D Imaging Reveals Participation of Donor Islet Schwann Cells and Pericytes in Islet Transplantation and Graft Neurovascular Regeneration." EBioMedicine 2(2): 109-119.
· Deisseroth, K., et al. (2015). "Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs."
· Costantini, I., et al. (2015). "A versatile clearing agent for multi-modal brain imaging." Scientific reports 5.
· Moy, A. J., et al. (2014). "High-resolution visualization of mouse cardiac microvasculature using optical histology." Biomedical optics express 5(1): 69-77.
· Yang, B., et al. (2014). "Single-cell phenotyping within transparent intact tissue through whole-body clearing." Cell 158(4): 945-958.
· Walton, K. D. and ?. Kolterud (2014). "Mouse Fetal Whole Intestine Culture System for Ex Vivo Manipulation of Signaling Pathways and Three-dimensional Live Imaging of Villus Development." JoVE (Journal of Visualized Experiments)(91): e51817-e51817.
· Tomer, R., et al. (2014). "Advanced CLARITY for rapid and high-resolution imaging of intact tissues." Nature protocols 9(7): 1682-1697.
· Spence, R. D., et al. (2014). "Bringing CLARITY to gray matter atrophy." NeuroImage 101: 625-632.
· Juang, J.-H., et al. (2014). "Three-dimensional islet graft histology: panoramic imaging of neural plasticity in sympathetic reinnervation of transplanted islets under the kidney capsule." American Journal of Physiology-Endocrinology and Metabolism 306(5): E559-E570.
· Hsiang, H.-L. L., et al. (2014). "Manipulating a "Cocaine Engram" in Mice." The Journal of Neuroscience 34(42): 14115-14127.
· Moy, A. J., et al. (2013). "Optical histology: a method to visualize microvasculature in thick tissue sections of mouse brain." PloS one 8(1): e53753.
· Fu, Y.-Y., et al. (2013). "3-D imaging and illustration of mouse intestinal neurovascular complex." American Journal of Physiology-Gastrointestinal and Liver Physiology 304(1): G1-G11.
· Sun, X., et al. (2012). "Campylobacter jejuni induces colitis through activation of mammalian target of rapamycin signaling." Gastroenterology 142(1): 86-95. e85.
· Rosines, E., et al. (2010). "Constructing kidney-like tissues from cells based on programs for organ development: toward a method of in vitro tissue engineering of the kidney." Tissue Engineering Part A 16(8): 2441-2455.
· Fu, Y.-Y., et al. (2010). "Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution." Journal of biomedical optics 15(4): 046018-046018-046019.
· Fu, Y. Y., et al. (2009). "Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution." Gastroenterology 137(2): 453-465.
應用:診斷
· Liu, A. K. L., et al. (2015). "Bringing CLARITY to the human brain: visualisation of Lewy pathology in three‐dimensions." Neuropathology and applied neurobiology.
· Liu, Y.-A., et al. (2015). "Perivascular interstitial cells of Cajal in human colon." CMGH Cellular and Molecular Gastroenterology and Hepatology 1(1): 102-119.
· Das, R., et al. (2014). Optically clearing tissue as an initial step for 3D imaging of core biopsies to diagnose pancreatic cancer. SPIE BiOS, International Society for Optics and Photonics.
· Li, M., et al. (2012). "Surface maturation scoring for oesophageal squamous intraepithelial neoplasia: a novel diagnostic approach inspired by first endomicroscopic 3-dimensional reconstruction." Gut: gutjnl-2011-301946.
應用:昆蟲
· Wu, C.-L., et al. (2015). "A Single Pair of Neurons Modulates Egg-Laying Decisions in Drosophila." PloS one 10(3).
· Huang, C.-W., et al. (2015). "Tequila Regulates Insulin-Like Signaling and Extends Life Span in Drosophila melanogaster." The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 70(12): 1461-1469.
· Hsiao, P.-Y., et al. (2015). "Non-invasive manipulation of Drosophila behavior by two-photon excited red-activatable channelrhodopsin." Biomedical optics express 6(11): 4344-4352.
· Shih HW, Wu CL, Chang SW, Liu TH, Jason Lai SY, Fu TF, Fu CC & Chiang AS* (2015) Parallel Circuits Control Temperature Preference in Drosophiladuring Aging. Nature Communication DOI: 10.1038/ncomms8775
· Shih CT, Sporns O, Yuan SL, Su TS, Lin YJ, Chuang CC, Wang TY, Lo CC, Greenspan RJ, Chiang AS* (2015) Connectomics-Based Analysis of Information Flow in the Drosophila Brain. Curr Biol 25, 1249-58. (IF: 9.494)
· Li, Y., et al. (2015). "The octopamine receptor oct?2R is essential for ovulation and fertilization in the fruit fly Drosophila melanogaster." Archives of insect biochemistry and physiology 88(3): 168-178.
· Shao, H.-C., et al. (2014). "Developing a Stereotypical Drosophila Brain Atlas." Biomedical Engineering, IEEE Transactions on 61(12): 2848-2858.
· Chihara, T., et al. (2014). "Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila."
· Chin, A. L., et al. (2014). "Diversity and wiring variability of visual local neurons in the Drosophila medulla M6 stratum." Journal of Comparative Neurology 522(17): 3795-3816.
· Chen, A. Y., et al. (2014). "Walking deficits and centrophobism in an α‐synuclein fly model of Parkinson's disease." Genes, Brain and Behavior 13(8): 812-820.
· Hess-Homeier DL, Fan CY, Gupta T, Chiang AS, Certel SJ* (2014) Astrocyte-specific regulation of hMeCP2 expression in Drosophila. Biol Open(Posted Online). (New journal)
· Schoofs A, Hückesfeld S, Schlegel P, Miroschnikow A, Bader R, Zeymer M, Spie? R, Chiang AS, Pankratz MJ* (2014) Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain. PLoS Biol 12, e1001893.(IF: 11.771, 5-Year IF: 12.807)
· Chin AL, Lin CY, Fu TF, Dickson BJ, Chiang AS* (2014) Diversity and wiring variability of visual local neurons in the Drosophila medulla M6 stratum.J Comp Neurol 522(17): 3795-3816. (IF:3.50)
· Wu MC, Chu LA, Hsiao PY, Lin YY, Chi CC, Liu TH, Fu CC*, Chiang AS* (2014) Optogenetic control of selective neural activity in multiple freely moving Drosophila adults. Proc Natl Acad Sci USA 111, 5367-5372. (IF: 9.737, 5-Year IF: 10.583)
· Wu, C.-L., et al. (2013). "An octopamine-mushroom body circuit modulates the formation of anesthesia-resistant memory in Drosophila." Current Biology 23(23): 2346-2354.
· Lin, C.-Y., et al. (2013). "A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain." Cell reports 3(5): 1739-1753.
· Lin, H.-H., et al. (2013). "Parallel neural pathways mediate CO2 avoidance responses in Drosophila." Science 340(6138): 1338-1341.
· Pai, T.-P., et al. (2013). "Drosophila ORB protein in two mushroom body output neurons is necessary for long-term memory formation." Proceedings of the National Academy of Sciences 110(19): 7898-7903.
· Dubnau, J. and A.-S. Chiang (2013). "Systems memory consolidation in Drosophila." Current opinion in neurobiology 23(1): 84-91.
· Lehnert, B. P., et al. (2013). "Distinct roles of TRP channels in auditory transduction and amplification in Drosophila." Neuron 77(1): 115-128.
應用:斑馬魚
· Diekmann, H., et al. (2015). "Characterization of optic nerve regeneration using transgenic zebrafish." Frontiers in cellular neuroscience 9.
· Diekmann, H., et al. (2015). "Active mechanistic target of rapamycin plays an ancillary rather than essential role in zebrafish CNS axon regeneration." Frontiers in cellular neuroscience 9.
應用:植物
· Cheng, W. Y., et al. (2003). "The Structure of Tassel in Barren Stalk 1 (ba1) Mutant of Maize." Microscopy and Microanalysis 9(S02): 220-221.
· Cheng, P.-c., et al. (2003). "Nonlinear Bio-photonic Crystal Effect of Silica Deposition in Plants? V." Microscopy and Microanalysis 9(S02): 1354-1355.
· Lee, B.-h., et al. (2009). "Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem." Plant physiology 150(1): 205-216.
應用:生物材料
Tang, S.-C., et al. (2010). "Vascular labeling of luminescent gold nanorods enables 3-D microscopy of mouse intestinal capillaries." ACS nano 4(10): 6278-6284.
· Tseng, S.-j., et al. (2009). "Integration of optical clearing and optical sectioning microscopy for three-dimensional imaging of natural biomaterial scaffolds in thin sections." Journal of biomedical optics 14(4)

默瑞(上海)生物科技有限公司
服務熱線:4006-400-850
網址:www.69oz.com
產品咨詢:info@moreybio.com
儀器售后:service@moreybio.com